
November 2015
Number 47

 1 Know How...
 Including missing data
 Tamar E. Granor, PhD

 8 Future
 Anonymizing Your Data
 Whil Hentzen

 15 VFPX
 Thor Option Dialogs
 Rick Schummer

 22 Future
 Automating the Filling In Of A PDF
 - Reprise, Part 1
 Whil Hentzen

Including
missing data
Sometimes an outer join isn’t
suffi cient to ensure that all the
desired combinations are shown.

Tamar E. Granor, Ph.D.

In my recent series on the OVER clause, I failed to
mention a trap in certain cases that can result in
inaccurate data. This article explains the problem
and demonstrates a solution that’s applicable not
just with OVER, but more broadly.
The OVER clause provides several ways of look-
ing at data from multiple groups in a single result
record. For example, you can use LAG and LEAD
to include values from preceding and following
records; my May, 2015 article shows how. Window
frames, described in my March, 2015 article let you
apply aggregate and analytical functions across a
group of records.

Most of the examples in those articles use
OVER in the context of time periods, such as days,
months or years. For example, the query in List-
ing 1, drawn from the May article (and like all the
examples in this article, using the AdventureWorks
2014 sample database), computes the quantity
of each product sold in each year, and puts in a
record with the previous year’s sales and the fol-
lowing year’s sales. Figure 1 shows partial results.
The query is included in this month’s downloads as
SalesByYearWithPrevAndFoll.SQL.

 Listing 1. LAG and LEAD let you pull data from preceding and
following records into the current record.
WITH csrYearlySales
 (OrderYear, ProductID, NumSold)

AS
(SELECT YEAR(OrderDate) AS OrderYear,
 ProductID, SUM(OrderQty) AS NumSold
 FROM Sales.SalesOrderHeader SOH
 JOIN Sales.SalesOrderDetail SOD
 ON soh.SalesOrderID = sod.SalesOrderID
 GROUP BY YEAR(OrderDate), ProductID)

SELECT OrderYear, ProductID,
 LAG(NumSold) OVER
 (PARTITION BY ProductID
 ORDER BY OrderYear) AS PrevYear,
 NumSold AS CurrYear,
 LEAD(NumSold) OVER
 (PARTITION BY ProductID
 ORDER BY OrderYear) AS FollYear
 FROM csrYearlySales
 ORDER BY ProductID, OrderYear

Page 2	 FoxRockX� November 2015

However, there’s an assumption built into the
query—that each product was sold only in consecu-
tive years. That is, LAG and LEAD look a specified
number of records (by default, one) back and for-
ward, based on the specified ordering; they don’t
consider the actual value of the ordering fields in
those records to confirm that they’re consecutive.

If you modify the query to show monthly
sales with the previous and following month,
as in Listing 2 (included in this month’s down-
loads as SalesByMonthWithPrevAndFoll.SQL),
the assumption and its flaws are more readily
exposed. The first few lines of the results in Fig-
ure 2 make the problem obvious.

Listing 2.When you use LAG and LEAD with months (or days,
rather than years), the underlying assumption is more apparent.
WITH csrMonthlySales
(OrderMonth, OrderYear, ProductID, NumSold)
AS
(SELECT MONTH(OrderDate) AS OrderMonth,
 YEAR(OrderDate) AS OrderYear,
 ProductID, SUM(OrderQty) AS NumSold
 FROM Sales.SalesOrderHeader SOH
 JOIN Sales.SalesOrderDetail SOD
 ON soh.SalesOrderID = sod.SalesOrderID
 GROUP BY YEAR(OrderDate),
 MONTH(OrderDate), ProductID)

SELECT OrderMonth, OrderYear, ProductID,
 LAG(NumSold) OVER
 (PARTITION BY ProductID
 ORDER BY OrderYear, OrderMonth)
 AS PrevMonth,
 NumSold AS CurrMonth,

 LEAD(NumSold) OVER
 (PARTITION BY ProductID
 ORDER BY OrderYear, OrderMonth)
 AS FollMonth
 FROM csrMonthlySales
 ORDER BY ProductID, OrderYear, OrderMonth

The first row represents May, 2011. It correctly
shows null for the previous month, since this is the
first month for that product, and 24 for May. How-
ever, it shows 58 for the following month, presum-
ably June, 2011. But a look at the next row shows
that, in fact, that 58 belongs to July, 2011; there were
no sales of product 707 in June, 2011.

The same problem can occur with window
frames using the ROWS keyword. Such a frame
includes all records in the specified group without
checking the data in the fields that specify the order.
For example, the query in Listing 3 (included in this
month’s downloads as ProductSalesWithWeekly-
WRONG.sql) is intended to compute units sold
by day and by week for each product. It correctly
computes daily sales, but because not every prod-
uct is sold every day, the WeekSales field actually
contains the number sold for the specified day and
the three most recent days before it when the prod-
uct was sold and the next three days on which the
product was sold. You can see the problem in the
partial results in Figure 3; for example, the first row
shows a weekly total of 6, though only 3 units of
product 707 were sold in the week between May 28
and June 3, 2011. The query is computing the total
of the May 31, 2011 row and the next three rows.

Listing 3. This query computes the daily sales for each product
and is intended to include the weekly total (with the specified
day in the middle) in each. It doesn’t.
WITH csrSalesByProduct
 (ProductID, OrderDate, NumSold)
AS
(SELECT ProductID, OrderDate, SUM(OrderQty)
 FROM [Sales].[SalesOrderHeader] SOH
 JOIN [Sales].[SalesOrderDetail] SOD
 ON SOH.SalesOrderID =
 SOD.SalesOrderDetailID
 GROUP BY ProductID, OrderDate)

 SELECT OrderDate, ProductID,
 NumSold AS TodaysSales,
 SUM(NumSold) OVER (

Figure 1. Using LAG and LEAD, each row in this result
shows data from three years.

Figure 2. Using LAG and LEAD with monthly data, you can
see gaps that result in wrong data.

Figure 3. The results here show the flaw in computing weekly
sales using ROWS BETWEEN 3 PRECEDING AND 3 FOL-
LOWING.

November 2015	 FoxRockX� Page 3

 PARTITION BY productID
 ORDER BY ORDERDATE
 ROWS BETWEEN 3 PRECEDING AND
 3 FOLLOWING) AS WeekSales
 FROM csrSalesByProduct
 ORDER BY ProductID, OrderDate

Including missing data
In general, in SQL, the way we make sure to include
rows that represent missing data is using outer
joins. For example, the query in Listing 4 (included
in this month’s downloads as OneMonthSales.
SQL) computes the number of each product sold in
a specified month. Because of the LEFT JOIN in the
main query, all products are included, even those
not sold in the specified month.

Listing 4. The left outer join in this query ensures that every
product is included in the results, not just those sold in October,
2013.
WITH csrProductSales (ProductID, NumSold)
AS
(SELECT ProductID, SUM(OrderQty)
 FROM [Sales].[SalesOrderDetail] SOD
 JOIN [Sales].[SalesOrderHeader] SOH
 ON SOD.SalesOrderDetailID =
 SOH.SalesOrderID
 WHERE MONTH(OrderDate) = 10
 AND YEAR(OrderDate) = 2013
 GROUP BY ProductID)

SELECT Product.ProductID, Name, NumSold
 FROM [Production].[Product]
 LEFT JOIN csrProductSales
 ON csrProductSales.ProductID =
 Product.ProductID

But the key to using an outer join this way is
that we have a list of all products we can start with.
In the earlier queries, we were missing months or
days and the database doesn’t contain a list of those.
We could create a table to hold all dates of interest,
but that would be a waste of space and would peri-
odically require going in and adding more dates.

Fortunately, there are better ways to solve this
problem. I’ll show two solutions, both adapted
from this discussion: http://stackoverflow.com/
questions/11479918/include-missing-months-in-
group-by-query.

To make it easier to follow, we’ll start with a
simpler problem, one that doesn’t need OVER:
counting how many orders were placed each day,
essentially the same problem as in the StackOverflow
post, but adapted to AdventureWorks.

The first approach, shown in Listing 5 uses a
recursive CTE to build the list of dates. (I explained
recursive CTEs in my March, 2014 article.) The
first thing it does is extract the earliest and latest
order dates to a pair of variables. (If you only want
to report on particular dates, you can instead just
set the variables appropriately.) The recursive CTE
then uses the start date as the anchor and applies the
DATEADD function to it to generate the remaining
dates, stopping when it reaches the specified end
date.

Once we have a complete list of dates, it’s easy
to do an outer join between that list and the sales
orders to count how many there are each day.
This query, shown in Listing 5, is included in this
month’s downloads as DailyOrderCountRecursive.
SQL.

Listing 5. One way to make sure all dates are included uses a
recursive CTE to generate the list.
DECLARE @StartDate DATETIME ;
DECLARE @EndDate DATETIME ;

SELECT @StartDate = MIN(Orderdate),
 @EndDate = MAX(OrderDate)
 FROM [Sales].[SalesOrderHeader];

-- recursive CTE
WITH AllDates (tDate)
AS (
 SELECT @StartDate
 UNION ALL
 SELECT DATEADD(DAY, 1, tDate)
 FROM AllDates
 WHERE tDate < @EndDate
)

SELECT tDate,
 COUNT(SOH.SalesOrderID) AS OrderCount
FROM AllDates
 LEFT JOIN Sales.SalesOrderHeader AS SOH
 ON SOH.OrderDate >= tDate
 AND SOH.OrderDate < DATEADD(DAY, 1, tDate)
GROUP BY tDate
OPTION (MAXRECURSION 0);

The last line specifying MAXRECURSION 0
is needed because the default limit for recursion is
100. Setting that option to 0 means unlimited recur-
sion.

The second approach to generating all the
dates is a little harder to understand at first glance,
but gives the same results. It also uses a CTE, but
instead of using recursion, it generates a large set of
numbers, keeps only the right quantity of numbers,
and adds each to the start date using DATEADD.
This version, included in this month’s downloads
as DailyOrderCountTopN.SQL, is shown in Listing
6.

Listing 6. This solution gets the list of dates by generating
numbers to add to the start date.
DECLARE @StartDate DATETIME ;
DECLARE @EndDate DATETIME ;

SELECT @StartDate = MIN(Orderdate),
 @EndDate = MAX(OrderDate)
 FROM [Sales].[SalesOrderHeader];

WITH AllDates (tDate)
AS
(
 SELECT DATEADD(DAY, Num, @StartDate)
 FROM (
 SELECT TOP (DATEDIFF(DAY, @StartDate,
 @EndDate) + 1)
 ROW_NUMBER() OVER
 (ORDER BY [object_id]) - 1 AS Num
 FROM sys.all_objects
 ORDER BY [object_id]) AS Nums
)

Page 4	 FoxRockX� November 2015

SELECT AllDates.tDate,
 COUNT(SOH.SalesOrderID) AS OrderCount
FROM AllDates
 LEFT OUTER JOIN Sales.SalesOrderHeader SOH
 ON SOH.OrderDate >= AllDates.tDate
 AND SOH.OrderDate <
 DATEADD(DAY, 1, AllDates.tDate)
GROUP BY AllDates.tDate
ORDER BY AllDates.tDate;

As in the previous example, we start by fig-
uring out the range of dates we want. The nested
query in the CTE generates a list of numbers from 1
to the number of days we want; the way it does so
is creative. It applies the ROW_NUMBER function
to the system table called all_objects, and then uses
TOP to limit the list to the desired number of days.
The main query is then essentially the same as in
the previous example, using an outer join to ensure
we get results for every date.

A couple of caveats: first, this approach is lim-
ited by the size of the all_objects table. In my tests, I
can’t get more than 2708 distinct dates, even if I set
the start and end dates to a larger range. Second,
in my testing, for this query, the recursive solution
is much faster than the Top N solution. (For other
examples I tested, where the number of items to
be generated is smaller, the Top N solution is still
slower, but the difference is much less noticeable.)

Calling all months
The same two approaches work when it’s all
months you want to include, rather than all dates.
The DateAdd() function makes it easy to switch
from days to months, with one complication.
We need to make sure that the start and end
dates reflect the first of the month. We can do
that with another application of DateAdd and
DateDiff, as the code in Listing 7 demonstrates.
This code is included in this month’s downloads
as MonthlyOrderCountRecursive.sql. Analogous
code using the top N approach is included in the
downloads as MonthlyOrderCountTopN.sql.

Listing 7. To show data for all months rather than all dates,
change the first parameter to DateAdd and adjust the start and
end dates.
DECLARE @StartDate DATETIME ;
DECLARE @EndDate DATETIME ;

SELECT @StartDate = MIN(Orderdate),
 @EndDate = MAX(OrderDate)
 FROM [Sales].[SalesOrderHeader];

-- correct to point to first of month
SET @StartDate = DATEADD(MONTH,
 DATEDIFF(MONTH, 0, @StartDate), 0);
SET @EndDate = DATEADD(MONTH,
 DATEDIFF(MONTH, 0, @EndDate), 0);

-- recursive CTE
WITH AllMonths (tDate)
AS
(SELECT @StartDate AS tDate
 UNION ALL
 SELECT DATEADD(m, 1, tDate)

 FROM AllMonths
 WHERE tDate < @EndDate)

SELECT DATENAME(MONTH, tDate) AS OrderMonth,
 YEAR(tDate) AS OrderYear,
 COUNT(SOH.SalesOrderID) AS OrderCount
FROM AllMonths
LEFT OUTER JOIN Sales.SalesOrderHeader as SOH
 ON SOH.OrderDate >= tDate
 AND SOH.OrderDate <
 DATEADD(MONTH, 1, tDate)
GROUP BY tDate
OPTION (MAXRECURSION 0);

The computation to adjust StartDate and End-
Date to the first of the relevant months is worth a
little discussion. First, DateDiff computes the num-
ber of months between SQL Server’s “zero date”
(January 1, 1900) and the specified date. It then
adds that many months to the zero date to get the
first day of the relevant month. While you could
get to the first of the month by simply subtracting
the right number of days from the date (using the
DAY() function), the approach here has the advan-
tage of setting the time to midnight as well, so it’s
the absolute start of the month, not just a random
time on the right day.

Handling years is analogous in both cases.
Change the first parameter to DateAdd() to YEAR,
and modify the adjustment to StartDate and
EndDate to go to the first of the year. This month’s
downloads include YearlyOrderCountRecursive.
sql and YearlyOrderCountTopN.sql, showing the
recursive and TOP N solutions, respectively.

Including missing records in two
dimensions
The examples so far have required including miss-
ing records for a single table, but the queries in the
first part of this article actually need to deal with
two sets of missing values. Not only might there be
some time periods (days, months, years, or what-
ever, depending on the particular query) for which
there’s no data at all, but there are also products
which may not have been sold on a particular date
or in a particular month or year.

For example, as indicated in Figure 2, though
there are sales in June 2011, product 707 wasn’t
sold at all that month. So simply generating a list
of all months doesn’t provide a way to be sure we
include all months for all products. To do that, we
need to create a table that has that combination and
outer join it to the actual data.

Consider the problem of showing the number
of units ordered for each product on each day in
a specified period. The table we need for the “all”
side of an outer is one that has one record for each
product for each day in the period. The query in
Listing 8 (included in this month’s downloads as
DailyOrderCountByProductAllProductsRecursive.
SQL) shows units sold for each product in 2013; it

November 2015	 FoxRockX� Page 5

uses a series of CTEs to create the necessary table, as
well as to compute the daily units for each product
in the specified period. The main query then joins
the computed totals with the list of date/product
combinations.

Listing 8. The CTEs here compute units sold by product by
day, and create a list of all combinations of product and date.
The two are joined to give a list of units sold per product each
day in 2013.
DECLARE @StartDate DATETIME ;
DECLARE @EndDate DATETIME ;

SET @StartDate = '1/1/2013';
SET @EndDate = '1/1/2014';

-- recursive CTE
WITH AllDates (tDate)
AS
(SELECT @StartDate AS tDate
 UNION ALL
 SELECT DATEADD(DAY, 1, tDate)
 FROM AllDates
 WHERE tDate < @EndDate),

csrProductsByDays (tDate, ProductID)
AS
(SELECT tDate, ProductID
 FROM AllDates
 CROSS JOIN Production.Product),

csrProductOrders (OrderDate, ProductID,
 NumOrdered)
AS
(SELECT OrderDate, ProductID, SUM(OrderQty)
 FROM Sales.SalesOrderHeader as SOH
 JOIN Sales.SalesOrderDetail SOD
 ON SOH.SalesOrderID = SOD.SalesOrderDe-
tailID
 WHERE OrderDate >= @StartDate
 AND OrderDate < @EndDate
 GROUP BY OrderDate, ProductID)

SELECT tDate, csrProductsByDays.ProductID,
 ISNULL(NumOrdered,0) AS NumOrdered
FROM csrProductsByDays
 LEFT OUTER JOIN csrProductOrders
 ON OrderDate >= tDate
 AND OrderDate < dateadd(DAY, 1, tDate)
 AND csrProductsByDays.ProductID = csrPro-
ductOrders.ProductID
ORDER BY ProductID, tDate
OPTION (MAXRECURSION 0);

The first CTE (AllDates) uses the recursive
method to get a list of dates in the specified period.

The second CTE (csrProductsByDays) uses a
cross-join to build a list of all date/product combi-
nations. A cross-join is a join with no join condition;
it matches every record in the first table with each
record in the second table. Usually, cross-joins are
something you try to avoid, but in cases like this,
they’re extremely useful.

The third CTE (csrProductOrders) computes
the number of units sold for each product each day
that it was sold.

Finally, the main query does an outer join
between the results of the last two CTEs. Partial
results are shown in Figure 4. Each record in the

result that has 0 in the NumOrdered column was
added by the outer join. If we ran the query that
produces csrProductOrders on its own (with just
the code to set up the @StartDate and @EndDate
variables), those rows would be omitted.

This month’s downloads include a version
of this query using the TOP N approach as
DailyOrderCountByProductAllProductsTopN.
SQL.

Including missing records with
OVER
Applying this technique with OVER isn’t actually
any different than using it in other queries. You use
CTEs in the same way to ensure that you have all
combinations to use in an outer join.

Listing 9 shows a query that correctly
includes the sales of each product for each month,
as well as sales of the product in the previous
and following months in each record. The
query is included in this month’s downloads as
SalesByMonthAllWithPrevAndFollRecursive.sql.

Listing 9. Using the same techniques as previous examples,
you can get accurate results with LAG and LEAD, even if data
is missing.
DECLARE @StartDate DATETIME ;
DECLARE @EndDate DATETIME ;

SELECT @StartDate = MIN(Orderdate),
 @EndDate = MAX(OrderDate)
 FROM [Sales].[SalesOrderHeader];

-- correct to point to first of month
SET @StartDate = DATEADD(MONTH,
 DATEDIFF(month, 0, @StartDate), 0);
SET @EndDate = DATEADD(MONTH,
 DATEDIFF(month, 0, @EndDate), 0);

WITH AllMonths (tDate)
AS
(SELECT @StartDate AS tDate

Figure 4. Each record with 0 in the NumOrdered column was
added by the outer join.

Page 6	 FoxRockX� November 2015

 UNION ALL
 SELECT DATEADD(m, 1, tDate)
 FROM AllMonths
 WHERE tDate < @EndDate),

csrProductsByMonths
 (OrderMonth, OrderYear, ProductID)
AS
(SELECT MONTH(tDate), YEAR(tDate), ProductID
 FROM AllMonths
 CROSS JOIN Production.Product),

csrMonthlySales
 (OrderMonth, OrderYear, ProductID, NumSold)
AS
(SELECT MONTH(OrderDate), YEAR(OrderDate),
 ProductID, SUM(OrderQty)
 FROM Sales.SalesOrderHeader SOH
 JOIN Sales.SalesOrderDetail SOD
 ON SOH.SalesOrderID = SOD.SalesOrderID
 GROUP BY YEAR(OrderDate), MONTH(OrderDate),
 ProductID)

SELECT PBM.OrderMonth, PBM.OrderYear,
 PBM.ProductID,
 ISNULL(LAG(NumSold) OVER
 (PARTITION BY PBM.ProductID
 ORDER BY PBM.OrderYear,
 PBM.OrderMonth), 0) AS PrevMonth,
 ISNULL(NumSold,0) AS CurrMonth,
 ISNULL(LEAD(NumSold) OVER
 (PARTITION BY PBM.ProductID
 ORDER BY PBM.OrderYear,
 PBM.OrderMonth), 0) AS FollMonth
 FROM csrMonthlySales MS
 RIGHT JOIN csrProductsByMonths PBM
 ON MS.OrderMonth = PBM.OrderMonth
 AND MS.OrderYear = PBM.OrderYear
 AND MS.ProductID = PBM.ProductID
 ORDER BY ProductID, OrderYear, OrderMonth

The CTEs here are quite similar to those in List-
ing 8, except that they’re focused on months, not
individual days. The main query uses a right outer
join to ensure that every product/month combina-
tion appears in the results. The LAG and LEAD
functions are wrapped in ISNULL, so that we get
zeroes rather than nulls to represent months where
a particular product wasn’t sold. Figure 5 shows
partial results.

To add weekly sales of a product to the daily
results (what the query in Listing 3 attempted),
we need to create a table with each combination of
product and date. Listing 10 demonstrates; here,
I’ve also decided to include only products that
have been sold at all, omitting those for which there
are no recorded sales. As in the previous example,
ISNULL converts nulls to zeroes. Partial results
are shown in Figure 6; the query is included in this
month’s downloads as ProductSalesWithWeekly.
sql.

Listing 10. To produce daily sales for product with a weekly
total centered on that day requires four CTEs before the main
query.
DECLARE @StartDate DateTime,
 @EndDate DateTime;

SELECT @StartDate = MIN(Orderdate),
 @EndDate = MAX(OrderDate)
 FROM [Sales].[SalesOrderHeader];

WITH csrSalesByProduct
 (ProductID, OrderDate, NumSold)
AS
(SELECT ProductID, OrderDate, SUM(OrderQty)
 FROM [Sales].[SalesOrderHeader] SOH
 JOIN [Sales].[SalesOrderDetail] SOD
 ON SOH.SalesOrderID =
 SOD.SalesOrderDetailID
 GROUP BY ProductID, OrderDate),

csrAllDays (tDate)
AS
(SELECT @StartDate AS tDate
 UNION ALL
 SELECT DATEADD(DAY, 1, tDate)
 FROM csrAllDays
 WHERE tDate < @EndDate),

csrAllProducts (ProductID)
AS
(SELECT DISTINCT ProductID
 FROM Sales.SalesOrderDetail),

csrAllProductsByDays (ProductID, tDate)
AS
(SELECT ProductID, tDate
 FROM csrAllProducts
 CROSS JOIN csrAllDays)

 SELECT tDate, APBD.ProductID,
 ISNULL(NumSold, 0) AS TodaysSales,
 ISNULL(SUM(NumSold) OVER (
 PARTITION BY APBD.ProductID
 ORDER BY tDate
 ROWS BETWEEN 3 PRECEDING
 AND 3 FOLLOWING),0) AS WeekSales
 FROM csrSalesByProduct SBP
 RIGHT JOIN csrAllProductsByDays APBD
 ON SBP.ProductID = APBD.ProductID
 AND SBP.OrderDate = APBD.tDate
 ORDER BY ProductID, tDate
 OPTION (MAXRECURSION 0);

This query uses four CTEs; they produce,
respectively, the sales totals by product for each
day, the list of all days in the specified period, the
distinct products from the SalesOrderDetail table,
and the cross-join of the dates with the products.

Figure 5. With records for each month/product combination, we
can show each month with sales for the preceding and follow-
ing months.

November 2015	 FoxRockX� Page 7

Putting it to work
In general, my strategy for writing complex que-
ries is to break the problem into small parts and
start with the parts for which the solution is clear to
me. Both VFP and SQL Server Management Studio
make working this way easy because you can run
something and quickly see the results.

Figuring out how to include all dates (or months
or years), along with all products or customers or
whatever, definitely called for that strategy. Now
that I’ve experimented with code to produce com-
plete lists like this, I’m really happy to have added
this tool to my toolbox.

Author Profile
Tamar E. Granor, Ph.D. is the owner of Tomorrow’s
Solutions, LLC. She has developed and enhanced
numerous Visual FoxPro applications for businesses
and other organizations. Tamar is author or co-
author of a dozen books including the award winning
Hacker’s Guide to Visual FoxPro, Microsoft Office
Automation with Visual FoxPro and Taming Visual
FoxPro’s SQL. Her latest collaboration is VFPX: Open
Source Treasure for the VFP Developer, available
at www.foxrockx.com. Her other books are available
from Hentzenwerke Publishing (www.hentzenwerke.
com). Tamar was a Microsoft Support Most Valuable
Professional from the program's inception in 1993
until 2011. She is one of the organizers of the annual
Southwest Fox conference. In 2007, Tamar received
the Visual FoxPro Community Lifetime Achievement
Award. You can reach her at tamar@thegranors.com or
through www.tomorrowssolutionsllc.com.

Figure 6. By including all combinations of products and dates,
we can compute running weekly sales for each product.

DOWNLOAD
Subscribers can download FR201511_code.zip in the SourceCode sub directory of the document portal. It
contains the following files:

tamargranor201511_code.zip
Source code for the article “Including missing data” from Tamar E. Granor, Ph.D.

whilhentzen201511_code.zip
Source code for the article “Anonymizing Your Data” from Whil Hentzen

rickschummer201511_code.zip
Source code for the article “Thor Option Dialogs” from Rick Schummer

whilhentzen201511_code.zip
Source code for the article “Automating the Filling In Of A PDF - Reprise” from Whil Hentzen

FoxRockX™(ISSN-1866-4563)

dFPUG c/o ISYS GmbH
Frankfurter Strasse 21 B
61476 Kronberg, Germany
Phone +49-6173-950903
Fax +49-6173-950904
Email: foxrockx@dfpug.de
Editor:
Rainer Becker-Hinrichs

Copyright © 2015 ISYS GmbH. This work is an independently produced
publication of ISYS GmbH, Kronberg, the content of which is the property
of ISYS GmbH or its affiliates or third-party licensors and which is protected
by copyright law in the U.S. and elsewhere. The right to copy and publish the
content is reserved, even for content made available for free such as sample
articles, tips, and graphics, none of which may be copied in whole or in part
or further distributed in any form or medium without the express written
permission of ISYS GmbH. Requests for permission to copy or republish any
content may be directed to Rainer Becker-Hinrichs.

FoxRockX, FoxTalk 2.0, FoxTalk, Visual Extend and Silverswitch are trademarks of ISYS GmbH. All product names or services
identified throughout this journal are trademarks or registered trademarks of their respective companies.

FoxRockX is published bimonthly by ISYS GmbH

